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Nucleation of oscillons
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~Received 30 April 1998; revised manuscript received 21 July 1998!

This study concerns the birth of oscillons, the subharmonic localized excitations observed in vibrated sand.
To this end, we have constructed a dynamical model based on nearest pattern interaction approximation. The
model admits an oscillon solution and features its nucleation process. It is argued here that oscillons are created
through nucleation rather than growing from linearly unstable modes. The physical implication of the nucle-
ation in pattern formation is discussed briefly.
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PACS number~s!: 47.54.1r, 05.45.2a, 47.35.1i, 83.70.Fn
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This paper addresses the novel localized subharmonic
citations called ‘‘oscillons,’’ discovered recently in vibrate
sand @1,2#. To understand the nature of the oscillons,
searchers have taken two different approaches. One is
direct molecular-dynamics–type simulations of many int
acting particles on a vibrating plate@3#. The other approach
has been to model the dynamics of the vibrated gran
layer using heuristic or hydrodynamic-type equations@4–7#.
Recently, a model discrete in time but continuous in sp
has been proposed, which is free of physics specific to gra
lar materials@8#. The experimentally observed features of
oscillon are generally reproduced by the model stud
@4–6,8#. As it is, it is now more convincing that the exper
mentally observed oscillons in vibrated sand are not pecu
to the granular materials but rather general in other exten
media too. In this regard, we notice that broadly simi
structures have been also found in vibrated liquids@9,10#.

In this study, we are concerned with the birth of oscillo
as it is believed to bear the clues for a variety of glob
patterns associated with the oscillons. To this end, we n
to construct a dynamical model particularly suitable for o
purpose. In the absence of any deterministic equation
motion for the granular systems@11#, we take the following
steps to build our model for oscillons.

Poincare´ first recognized the importance of studying t
dynamical behavior of mappings, as defined by a differe
equation,

F:~Xi ,Ẋi !→~Xi 11 ,Ẋi 11!, ~1!

whereF is a nonlinear transformation@12#. The indexi refers
to discrete steps in time. Such a mapping is believed to b
general relevance todifferential equations. For a periodically
forced oscillator, the time step corresponds to the period
forcing.

In this study, we extend this methodology to a spatia
extended system subject to a periodic forcing@8#, and con-
sider the following type of map:

F:~h@rW,t#,ḣ@rW,t# !→~h@rW,t1T#,ḣ@rW,t1T# !, ~2!

where the scalar fieldh(rW) may represent the height of wate
surface or granular layer at positionrW in a two-dimensional
space.
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Let us consider in this study only those systems in wh

the variableḣ is not important in the formation of patterns
For a granular system shaken periodically, for example, th
is a periodic collision between sand and container. At

collision stage, information regardingḣ on the velocities of
particles would be constantly refreshed. It has been arg

that such characteristics may decoupleḣ from h in the dy-
namics of pattern formation in vibrated sand@4,7#.

To construct a dynamical model, we take the followin
two assumptions:~i! A local excitation organizes itself only
through interacting with neighboring excitations.~ii ! A rise

@h(rW,t).0# or a fall @h(rW,t),0# from the flat surface

@h(rW,t)50# is equally likely over time.
Nonlinear coupling of the heights between any two loc

tions, sayrW andrW8, is believed to be described by a functio
of the amplitude difference between the two points, s

Dh5h(rW8,t)2h(rW,t). In this study we assume thath(rW) is
coupled with those only in some specific neighboring reg
determined by the size of the characteristic local excitati
of the system. To define the neighboring region, let us
sume that the domain size of an excitation is represented
a circle with radiusR. The specific neighboring region of th

position rW is then chosen as the region concentric betwe

the circles of radiusR and 3R centered atrW as illustrated in
Fig. 1~a!, where the circlesA andA8 are inserted to indicate
the domain size of the excitations.

To define the term ‘‘nearest pattern interaction appro
mation’’ used in this study, we consider the average fluct

tion difference betweenh(rW,t) and h(rW8,t) at the points
within the shaded region, defined as

Dh~rW,t ![
1

DSE Wr
W
8rW@h~rW8,t !2h~rW,t !#d2rW8, ~3!

whererW8 now runs over entire space butWrW8rW is a weighting

function being 1 ifR<urW82rWu<3R but 0 otherwise, andDS
denotes the area of the concentric region whereW51. We
850 ©1999 The American Physical Society
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PRE 59 851NUCLEATION OF OSCILLONS
assume thath(rW,t) is coupled with its neighbors in terms o

this averaged fluctuationDh(rW,t), and this is our definition
of the term ‘‘nearest pattern interaction approximation’’ us
in this study.

With the definition above, and denoting nT byn, we pro-
pose the following dynamical model for oscillons:

hn11~rW !5F@hn~rW !1aG„Dhn~rW !…#, n51,2, . . . , ~4!

where the functionF is a discrete map in time andG is
meant to incorporate the interaction between patterns by
ing a nonlinear function of the averaged fluctuation diffe

FIG. 1. ~a! The field atP is coupled with the fields at othe
locations only within the shaded region;~b! the functionF; ~c! the
function G.
e-
-

enceDhn(rW). We apply the one-dimensional mapF to the

current field hn(rW) at each location in space modified b

aG„Dhn(rW)… to determine the fieldhn11(rW) over the entire
space at next time step.

The assumptions~i! and~ii ! lead us to choose the specifi
functional forms ofF and G as shown in Fig. 1~b,c!. They
both are odd functions owing to assumption~ii !.

First, F is set as follows with subsequent explanations

F~h!5H h for uhu<h0 ,

h0 for h.h0 ,

2h0 for h,2h0 .

~5!

Assumption~i! has led us to consider a linear mapF(h)
with a slope of 1 with respect toh in its argument. The slope
of F being 1, the fieldh(rW,n) cannot grow unless it is
coupled with ‘‘neighbors.’’ The coupling is effected in thi
study by the functionG through the coupling constanta. It
is the characteristic of this model that only nonlinear int
action with ‘‘neighbors’’ takes part in the process of se
organization of any excitation to arise. Also, since the a
plitude of an excitation cannot grow indefinitely,F needs to
be bounded. We bound it by some valueh0 , which may
represent a saturated maximum amplitude of the excitatio
arise, if any. In reality, such saturation may be related
mass conservation and/or coarse graining effect. A deta
local structure at the peak of an oscillon is not our interes
this study and thus we simply set the amplitudes higher t
h0 to be justh0 .

For G, we choose a tangent function such as

G~Dh!5tan
p

2
Dh/~2h0!, ~6!

where the fluctuation differenceDh is scaled by 2h0 . Notice
that the functional form ofF implies that the maximum
variation ofDh is 2h0 , which corresponds to the amplitud
difference between the peak and the crater of an excitat

We choose the above specific forms forF andG because
they are the simplest, meeting the basic assumptions f
model. Other nonlinear functions which meet the assum
tions will not affect the results while some of the transitio
points may shift.

This model seems to be very similar in form to the one
@8#, which incorporates temporal period doubling and spa
pattern formation. In@8#, the nonlinear period doubling time
map at each point is augmented by a linear spatial coupl
In our case, the spatial coupling is nonlinear while the tim
map is linear with the saturation cutoff.

We are now ready to investigate the dynamics of
model system at hand. As an initial condition, the system
provided with an amplitude fluctuation at a noise lev
h0(rW)5d(rW),21023<d(rW)<1023. For the size of an exci-
tation, we setR54, h057. With this approach, we actuall
set the size of an excitation from the onset. We solve
model equation on a square plane with periodic bound
conditions. The coupling constanta serves here as a contro
parameter of the dynamics.
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We start with an oscillon observed fora513.2. After the
transition period, the dynamics settles down to a steady s
oscillating between the two structures as shown in Figs. 2~a!,
2~b!, where we see a three-dimensional perspective of
isolated excitation. We see clearly that the excitation os
lates with periodnn52 or at frequencyf 51/2, on one
cycle it forms a peak and on the next a crater. This is
characteristic of an oscillon as reported experimentally i
layer of vibrated sand. The oscillons are found stable in
parameter range of 13.1<a<14.122.

Next, we want to investigate the nucleation process of
oscillon, as has been reported experimentally@2#. For conve-
nience we now use a shadow graph to illustrate an oscil
where a peak of an oscillon is represented by a small circ
white spot and a crater by a black spot. The same oscillo
Fig. 2 is shown in Fig. 3~a!, where the white spot represen
the peak of an oscillon, which oscillates between white a
black. Let us now increase the coupling constant above
oscillon’s stability boundary to see what would happen to
oscillon. Figure 3~b! shows the scene after 460 time perio
after a has been raised to 14.123, where we observe
nucleation process of oscillons. We find that four oscillo
have been nucleated around the original oscillon and f
additional ones are being nucleated. Specifically, the mo
shows that oscillons grow by nucleating excitations of op
site phase at their outer edges. The same phenomenolog
been reported in experiments@2#.

The physical implication of the nucleation is rather s
nificant. Most of all, it implies that a global pattern chara
teristic to the system is constructed not by an instability o
linear mode, but rather by filling the space with the char
teristic localized excitations. It then helps one to underst
the occurrence of a variety of patterns including glob
stripes, oscillon lattice, oscillon chains, and oscillon pa
observed in experiments in association with the oscillons

The bifurcation diagram of this model system is presen
in Fig. 4. For a increasing from 0 to the critical value o
14.6, the randomly distributed initial fluctuation decays in
flat surface and there are no patterns organized. Asa ex-

FIG. 2. A three-dimensional perspective of an oscillon of t
model system (a513.2). The oscillon oscillates between~a! the
peak and~b! the crater.
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ceeds the critical value, a global pattern emerges after a
transition period. Figure 5~a! shows the pattern not yet fully
grown during the transition period. After this transition p
riod, the system settles down to the global stripes pattern
shown in Fig. 5~b!. We see that individual oscillons in Fig
5~a! during the transition period are connected together
form the stripes in Fig. 5~b!. The black and white stripes
oscillate with frequencyf 51/2, a white band in one cycle
turns into a black one in the next cycle, and so on. This re
gives clear evidence that the stripes are constructed by i
vidual oscillons. The stripes have grain boundaries in gen
as seen in Fig. 5~b!. As a increases further, the stripes g
more curved and defected, yielding more grain bounda
with disorder.

FIG. 3. ~a! Shadow graph of Fig. 2~a!. ~b! The nucleation of the
oscillon. Four are nucleated and an additional four are being nu
ated.

FIG. 4. Bifurcation diagram of the model.
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FIG. 5. Dynamics of the model.~a! Oscillons being nucleated during the transition period (a515.0). ~b! Global stripes after the
transition period (a515.0). ~c! The global stripes are disintegrated into an oscillon lattice and oscillon chains.~d! Oscillon chains separate
from the oscillon lattice. As the flat layer invades, small chains and individual oscillons separate from the lattice.~e! A steady state of an
oscillon chain coexisting with a pair of oscillons (a513.3).
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Let us now decreasea below the critical point. We find
that the system does not recover the flat space as it
before but instead exhibits hysteresis. We observe the
lowing. First, as the global stripes become unstable, they
gradually disintegrated into localized stripes as well as
oscillon lattices as shown in Fig. 5~c!. Second, as time goe
on, we see chains of oscillons and individual oscillons se
rated from the lattice@Fig. 5~d!#. As the flat layer invades
small chains and individual oscillons@cf. Fig. 2# separate
from the lattice. Figure 5~e! shows a steady state of a cha
of oscillons coexisting with a pair of oscillons ata513.3.
They oscillate at frequencyf 51/2 while the gray back-
ground oscillates withf 51.

In summary, we have constructed a dynamical model
A
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a qualitative study of the birth of oscillons. In the absen
thus far, to our knowledge, of any deterministic equations
the oscillons, our model is discrete in time but continuous
space, and is based on the nearest pattern interaction app
mation as defined in the text. The model admits an oscil
solution and features the nucleation process of oscillo
This implies that a global pattern is constructed by oscillo
and thus explains why the global stripes are disintegra
featuring oscillon lattices, chains, pairs, and individual osc
lons.
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