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Nucleation of oscillons
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This study concerns the birth of oscillons, the subharmonic localized excitations observed in vibrated sand.
To this end, we have constructed a dynamical model based on nearest pattern interaction approximation. The
model admits an oscillon solution and features its nucleation process. It is argued here that oscillons are created
through nucleation rather than growing from linearly unstable modes. The physical implication of the nucle-
ation in pattern formation is discussed briefly.
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This paper addresses the novel localized subharmonic ex- Let us consider in this study only those systems in which
sand[1,2]. To understand the nature of the oscillons, re-gor 4 granular system shaken periodically, for example, there

searchers have taken two different approaches. One is the 5 periodic collision between sand and container. At the

direct molecular-dynamics—type simulations of many inter- . . . . .- .
acting particles on a vibrating plaf8]. The other approach collision stage, information regardirty on the velocities of

has been to model the dynamics of the vibrated granu|aparticles would be constantly refresh_ed. It has been argued
layer using heuristic or hydrodynamic-type equatiphs7].  that such characteristics may decouplérom h in the dy-
Recently, a model discrete in time but continuous in spac&amics of pattern formation in vibrated sap7].

has been proposed, which is free of physics specific to granu- To construct a dynamical model, we take the following
lar materiald 8]. The experimentally observed features of antwo assumptions(i) A local excitation organizes itself only
oscillon are generally reproduced by the model studieshrough interacting with neighboring excitatior(§,) A rise

[4-6,8. As it is, it is now more convincing that the experi- [h(F,t)>O] or a fall [h(F,t)<0] from the flat surface
mentally observed oscillons in vibrated sand are not peculigg_l(re t)=0] is equally likely over time

to the granular materials but rather general in other extend _ . .
media too. In this regard, we notice that broadly similar Nonl|ne;ar coypllng of the heights between any wo loca-
structures have been also found in vibrated liqy@{40]. tions, sayr andr’, is believed to be described by a function
In this study, we are concerned with the birth of oscillonsof the amplitude difference between the two points, say,
as it is believed to bear the clues for a variety of 9|°ba|Ah=h(F’,t)—h(F,t). In this study we assume tha{r) is
patterns associated V\_/lth the oscﬂlong. To this .end, we ”eegoupled with those only in some specific neighboring region
to construct a dynamical model partlcularly spltable fF’f OUljetermined by the size of the characteristic local excitations
purpose. In the absence of any deterministic equations f the system. To define the neighboring region, let us as-

motion for the granular systen1], we take the following sume that the domain size of an excitation is represented by

steps to build our model for oscillons. . . . e ) . .
Poincafefirst recognized the importance of studying the & C|rcle with radiuRR. The specific neighboring region of the

dynamical behavior of mappings, as defined by a differenc®ositionr is then chosen as the region concentric between
equation, the circles of radiuf and 3R centered at as illustrated in
i i Fig. 1(a), where the circle®\ andA’ are inserted to indicate
FiOXi X)) = (Xi+1,Xi+1), (1) the domain size of the excitations.
To define the term “nearest pattern interaction approxi-

whereF is a nonlinear transformatidd 2]. The index refers Orpation” used in this study, we consider the average fluctua-

to discrete steps in time. Such a mapping is believed to be ot . L - )
general relevance wiifferential equationsFor a periodically ~ tion difference betweer(r,t) and h(r’,t) at the points
forced oscillator, the time step corresponds to the period ofithin the shaded region, defined as
forcing.

In this study, we extend this methodology to a spatially
extended system subject to a periodic forcjB§ and con-
sider the following type of map:

= 1 R R R
Ah(r,t)z—sf W, A h(r’,t)—h(r,t)]d?r’, ©)

F:(h[r,t],h[r t])— (h[r,t+T],h[r t+T]), 2

where the scalar fieltl(r) may represent the height of water Wherer’ now runs over entire space bt is a weighting

surface or granular layer at positionin a two-dimensional ~ function being 1 ifR<|r’ —r|<3R but 0 otherwise, and S
space. denotes the area of the concentric region whate 1. We
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enceAh,(r). We apply the one-dimensional mépto the
current field hn(F) at each location in space modified by

aG(Ah,(r)) to determine the fieldh,. ;(r) over the entire
space at next time step.
) The assumption§) and(ii) lead us to choose the specific
functional forms ofF and G as shown in Fig. (b,c). They
both are odd functions owing to assumpti@).
First, F is set as follows with subsequent explanations:

h for |h|<h,,
F(h)=4 hg for h>hg, (5)

(a)

Assumption(i) has led us to consider a linear mgh)
hy b with a slope of 1 with respect toin its argument. The slope

of F being 1, the fieIdh(F,n) cannot grow unless it is
coupled with “neighbors.” The coupling is effected in this
study by the functiorG through the coupling constaat It
. h is the characteristic of this model that only nonlinear inter-
; h, action with “neighbors” takes part in the process of self-
| organization of any excitation to arise. Also, since the am-
| plitude of an excitation cannot grow indefinitely,needs to
| ] -h, be bounded. We bound it by some valbg, which may
represent a saturated maximum amplitude of the excitation to
arise, if any. In reality, such saturation may be related to
h mass conservation and/or coarse graining effect. A detailed
G(A ) local structure at the peak of an oscillon is not our interest in
this study and thus we simply set the amplitudes higher than
hg to be justhg.
For G, we choose a tangent function such as

(b)

G(Ah)=tangAh/(2h0), ©6)

where the fluctuation differenckh is scaled by B,. Notice
that the functional form ofF implies that the maximum
variation of Ah is 2hy, which corresponds to the amplitude
difference between the peak and the crater of an excitation.
We choose the above specific forms foand G because
() they are the simplest, meeting the basic assumptions for a
model. Other nonlinear functions which meet the assump-
FIG. 1. (8 The field atP is coupled with the fields at other tions will not affect the results while some of the transition
locations only within the shaded regiofi) the functionF; (c) the points may shift.
function G. This model seems to be very similar in form to the one in
[8], which incorporates temporal period doubling and spatial
assume tha(rt) is coupled with its neighbors in terms of Pattern formation. 48], the nonlinear period doubling time
this averaged fluctuatioAh(r,t), and this is our definition map at each point is augmented by a linear spatial coupling.

of the term “nearest pattern interaction approximation” usedIn our case, the spatial coupling is nonfinear while the time
in this study P PP map is linear with the saturation cutoff.

. - . We are now ready to investigate the dynamics of the
pogg'ttr;]éh]% I?oevcpr:gogyﬁg%\?gélag%geelnf% trmc?sgi-llioayswe pro- modgl system at hand. As an initial C(_)ndition, the 'system is
' provided with an amplitude fluctuation at a noise level
R . _ ho(r)=8(r),—1073< 8(r)<10"3. For the size of an exci-
hni1(r)=F[hy(r)+aG(Ahy(r))], n=12,..., (49 tation, we seR=4, h,=7. With this approach, we actually
set the size of an excitation from the onset. We solve the
where the functionF is a discrete map in time an@ is  model equation on a square plane with periodic boundary
meant to incorporate the interaction between patterns by besonditions. The coupling constaatserves here as a control
ing a nonlinear function of the averaged fluctuation differ-parameter of the dynamics.
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FIG. 2. A three-dimensional perspective of an oscillon of the
model system ¢=13.2). The oscillon oscillates betweéa) the
peak andb) the crater.

We start with an oscillon observed far=13.2. After the
transition period, the dynamics settles down to a steady state
oscillating between the two structures as shown in Fi¢m, 2
2(b), where we see a three-dimensional perspective of an
isolated excitation. We see clearly that the excitation oscil-
lates with periodAn=2 or at frequencyf=1/2, on one
cycle it forms a peak and on the next a crater. This is the
characteristic of an oscillon as reported experimentally in a
layer of vibrated sand. The oscillons are found stable in the
parameter range of 13la<14.122.

Next, we want to investigate the nucleation process of an
oscillon, as has been reported experimentdly For conve-
nience we now use a shadow graph to illustrate an oscillon,
where a peak of an oscillon is represented by a small circular
white spot and a crater by a black spot. The same oscillon of
Fig. 2 is shown in Fig. @), where the white spot represents
the peak of an oscillon, which oscillates between white anq)S
black. Let us now increase the coupling constant above th
oscillon’s stability boundary to see what would happen to the

oscillon. Figure 8) shows the scene after 460 time periodsceeds the critical value, a global pattern emerges after a long
after « has been raised to 14.123, where we observe thgansition period. Figure (8 shows the pattern not yet fully
nucleation process of oscillons. We find that four oscillonsgrown during the transition period. After this transition pe-
have been nucleated around the original oscillon and foufioq, the system settles down to the global stripes pattern as
additional ones are being nucleated. Specifically, the modeJhown in Fig. §b). We see that individual oscillons in Fig.
shows that oscillons grow by nucleating excitations of 0PPO5(a) during the transition period are connected together to
site phase at th_eir oute( edges. The same phenomenology h@$m the stripes in Fig. ®). The black and white stripes
been reported in experimeritg]. o _ oscillate with frequencyf =1/2, a white band in one cycle
_The physical implication of the nucleation is rather sig-tyrns into a black one in the next cycle, and so on. This result
nificant. Most of all, it implies that a global pattern charac- gjyes clear evidence that the stripes are constructed by indi-
teristic to the system is constructed not by an instability of &jjgyal oscillons. The stripes have grain boundaries in general
linear mode, but rather by filling the space with the characyg seen in Fig. ®). As « increases further, the stripes get

teristic localized excitations. It then helps one to understanghore curved and defected, yielding more grain boundaries
the occurrence of a variety of patterns including globalith disorder.

stripes, oscillon lattice, oscillon chains, and oscillon pairs
observed in experiments in association with the oscillons.

(b)

FIG. 3. (a) Shadow graph of Fig.(@). (b) The nucleation of the
cillon. Four are nucleated and an additional four are being nucle-

. . . . . flat hysterisis stripe pattern disorder
The bifurcation diagram of this model system is presented | region R
in Fig. 4. For « increasing from 0 to the critical value of ! 116 46 0.0 "o

14.6, the randomly distributed initial fluctuation decays into
flat surface and there are no patterns organized afex- FIG. 4. Bifurcation diagram of the model.
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(a) (c)
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3

(e)

FIG. 5. Dynamics of the modela) Oscillons being nucleated during the transition periad=(5.0). (b) Global stripes after the
transition period ¢=15.0). (c) The global stripes are disintegrated into an oscillon lattice and oscillon clidjr@scillon chains separated
from the oscillon lattice. As the flat layer invades, small chains and individual oscillons separate from the(&t#icsteady state of an
oscillon chain coexisting with a pair of oscillona € 13.3).
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Let us now decrease below the critical point. We find a qualitative study of the birth of oscillons. In the absence
that the system does not recover the flat space as it wdbus far, to our knowledge, of any deterministic equations for
before but instead exhibits hysteresis. We observe the fokhe oscillons, our model is discrete in time but continuous in
lowing. First, as the global stripes become unstable, they argpace, and is based on the nearest pattern interaction approxi-
gradually disintegrated into localized stripes as well as thénation as defined in the text. The model admits an oscillon
oscillon lattices as shown in Fig(&. Second, as time goes Solution and features the nucleation process of oscillons.
on, we see chains of oscillons and individual oscillons sepal iS implies that a global pattern is constructed by oscillons

rated from the latticdFig. 5(d)]. As the flat layer invades, @nd thus explains why the global stripes are disintegrated
small chains and individual oscillorigf. Fig. 2] separate featuring oscillon lattices, chains, pairs, and individual oscil-

from the lattice. Figure @) shows a steady state of a chain lons.

of oscillons coexisting with a pair of oscillons at=13.3. The authors thank H. K. Pak and R. P. Behringer for
They oscillate at frequency=1/2 while the gray back- useful discussions. This work was supported in part by the
ground oscillates withf = 1. Korean Ministry of Information and Communications, and in

In summary, we have constructed a dynamical model fopart by the Ministry of Science and Technology.
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